
Grøstl – a SHA-3 candidate

http://www.groestl.info

Praveen Gauravaram1, Lars R. Knudsen1, Krystian Matusiewicz1, Florian Mendel2,
Christian Rechberger2, Martin Schläffer2, and Søren S. Thomsen1

1Department of Mathematics, Technical University of Denmark, Matematiktorvet 303S,
DK-2800 Kgs. Lyngby, Denmark

2Institute for Applied Information Processing and Communications (IAIK), Graz
University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

October 31, 2008

Summary

Grøstl is a SHA-3 candidate proposal. Grøstl is an iterated hash function with a compression
function built from two fixed, large, distinct permutations. The design of Grøstl is transparent
and based on principles very different from those used in the SHA-family.

The two permutations are constructed using the wide trail design strategy, which makes
it possible to give strong statements about the resistance of Grøstl against large classes of
cryptanalytic attacks. Moreover, if these permutations are assumed to be ideal, there is a proof
for the security of the hash function.

Grøstl is a byte-oriented SP-network which borrows components from the AES. The S-box
used is identical to the one used in the block cipher AES and the diffusion layers are constructed
in a similar manner to those of the AES. As a consequence there is a very strong confusion and
diffusion in Grøstl.

Grøstl is a so-called wide-pipe construction where the size of the internal state is signifi-
cantly larger than the size of the output. This has the effect that all known, generic attacks on
the hash function are made much more difficult.

Grøstl has good performance on a wide range of platforms and counter-measures against
side-channel attacks are well-understood from similar work on the AES.

1

Contents

1 Introduction 3

2 Design goals 3

2.1 Overall goals for the hash . 3
2.2 Failure-tolerant design . 4
2.3 Design considerations for the compression function 4

3 Specification of Grøstl 4

3.1 The hash function construction . 4
3.2 The compression function construction . 5
3.3 The output transformation . 5
3.4 The design of P and Q . 5
3.5 Initial values . 10
3.6 Padding . 11
3.7 Summary . 11

4 Design decisions and design features 11

4.1 The security of the construction . 11
4.2 AddRoundConstant . 12
4.3 SubBytes . 12
4.4 ShiftBytes and ShiftBytesWide . 13
4.5 MixBytes . 13
4.6 Output transformation . 13
4.7 Number of rounds . 14
4.8 Absence of trap-doors . 14

5 Modes of use for Grøstl 14

5.1 Message authentication . 14
5.2 Randomised hashing . 15
5.3 Security claims for the mentioned modes of operation 15

6 Cryptanalytic results 15

6.1 Attacks exploiting properties of the permutations 15
6.2 Generic collision attacks . 17
6.3 Generic attacks on the iteration . 18
6.4 Fixed points . 19
6.5 Security claims and summary of known attacks 19

7 Implementation aspects 19

7.1 Software implementations . 20
7.2 Benchmarks on PC platforms . 22
7.3 Hardware implementations . 23
7.4 Implementation attacks . 25

8 Conclusion 26

A The name 31

B S-box 31

2

1 Introduction

In this proposal we present the cryptographic hash function Grøstl as a candidate for the
SHA-3 competition initiated by the National Institute of Standards and Technology (NIST).

The paper is organised as follows. In Section 2, we give a high-level summary of the Grøstl

proposal, and state the design goals. In Section 3, we present the details of the proposal and in
Section 4, we describe the features specific to Grøstl and motivate our design choices. Section 5
introduces some alternative modes of operation of Grøstl for the use as message authentication
codes. In Section 6, we present our preliminary cryptanalysis results on Grøstl. Section 7
deals with implementation aspects of Grøstl, including benchmarks results and performance
estimates. Finally, we conclude in Section 8.

The name “Grøstl” may cause some problems in terms of pronunciation, and also due
to the character ‘ø’, which has different encodings around the world. Whenever problems
with character encodings may arise, we recommend the spelling Groestl. With respect to
pronunciation and other information on the name, see Appendix A.

2 Design goals

In this section, we give a brief motivation of the Grøstl proposal. Elegance of the design and
simplicity of analysis, as well as proofs of desirable properties are the overall goals. The fact that
it iteratively applies a compression function is among the few similarities with commonly used
hash functions. Additionally, we aim to have security margins at several layers of abstraction
in the design.

2.1 Overall goals for the hash

Here we state overall design goals for Grøstl.

• Simplicity of analysis, hence, Grøstl is based on a small number of permutations instead
of a block cipher (with many permutations).

• Provably secure construction (assuming ideal permutations).

• Well-known design principles underlying the permutations (again, allowing simple analy-
sis, provable properties).

• No special preference for a particular platform or word size, and good performance on a
very wide range of platforms.

• Side-channel resistance at little additional cost.

• Defining reduced variants for cryptanalysis is made straightforward.

• Prevention of length-extension attacks.

• Allow implementers to exploit parallelisation within the compression function1.

1Using Grøstl in a tree-mode, as any other cryptographic hash function for that matter, will also allow to
exploit parallelisation at a higher level, but we consider this outside the scope of our submission.

3

2.2 Failure-tolerant design

Non-random behaviour of the employed permutations do not necessarily lead to non-ideal prop-
erties of the compression function. Attacks on the compression function, in turn, may not lead
to attacks on the hash function.

• The internal state is significantly larger than the final output – hence, all known generic
attacks are thwarted.

• Known techniques that exhibit non-ideal behaviour of the permutations work only for
reduced variants.

• Attacks on the compression function do not necessarily translate to attacks on the hash
function.

• There are no known attacks on the compression function meeting the proven lower bounds.

2.3 Design considerations for the compression function

Traditional design approaches of hash functions are based on block ciphers, e.g., MD5, SHA-1,
SHA-256 [42], Whirlpool [3], Tiger [1], etc. This may seem sound since block cipher designs
are well understood. However, the key schedule of the block cipher becomes more important
in a setting where the attacker has control over every input and there is little consensus in
the community what constitutes a good key schedule. The recent attacks [16, 28, 38, 39, 54] on
SHA-1 and Tiger illustrate this issue. For this reason we base our proposal on a few individual
permutations rather than a large family of permutations indexed by a key. The advantages of
such a design methodology is as follows:

• No threat of attacks via the key schedule (e.g., weak keys).

• Since the key schedule of a block cipher is often rather slow, performance may be improved.

• Simplicity.

3 Specification of Grøstl

Grøstl is a collection of hash functions, capable of returning message digests of any number of
bytes from 1 to 64, i.e., from 8 to 512 bits in 8-bit steps. The variant returning n bits is called
Grøstl-n. We explicitly state here that this includes the message digest sizes 224, 256, 384,
and 512 bits. We now specify the Grøstl hash functions.

3.1 The hash function construction

The Grøstl hash functions iterate the compression function f as follows. The message M is
padded and split into ℓ-bit message blocks m1, . . . , mt, and each message block is processed
sequentially. An initial ℓ-bit value h0 = iv is defined, and subsequently the message blocks mi

are processed as
hi ← f(hi−1, mi) for i = 1, . . . , t.

Hence, f maps two inputs of ℓ bits each to an output of ℓ bits. The first input is called the
chaining input, and the second input is called the message block. For Grøstl variants returning
up to 256 bits, ℓ is defined to be 512. For larger variants, ℓ is 1024.

4

After the last message block has been processed, the output H(M) of the hash function is
computed as

H(M) = Ω(ht),

where Ω is an output transformation which is defined in Section 3.3. The output size of Ω is n
bits, and we note that n < ℓ. See Figure 1.

iv f f f- -- . . . f- - Ω

- - - -

mtm3m2m1

- H(m)

Figure 1: The Grøstl hash function.

3.2 The compression function construction

The compression function f is based on two underlying ℓ-bit permutations P and Q. It is
defined as follows:

f(h, m) = P (h⊕m)⊕Q(m)⊕ h. (1)

The construction of f is illustrated in Figure 2. In Section 3.4, we describe how P and Q are

h m

f?

??

P

-
?

�

Q

�

?

Figure 2: The compression function f . P and Q are ℓ-bit permutations.

defined.

3.3 The output transformation

Let truncn(x) be the operation that discards all but the trailing n bits of x. Then the output
transformation Ω is defined as

Ω(x) = truncn(P (x)⊕ x).

See Figure 3.

3.4 The design of P and Q

As mentioned, the compression function f comes in two variants; one is used for short message
digests, and one is used for long message digests. Each variant uses its own pair of permutations
P and Q. Hence, we define four permutations in total. The permutations will be assigned with
subscripts 512 or 1024, whenever it is necessary to distinguish them.

5

Px

Figure 3: The output transformation Ω computes P (x) ⊕ x and then truncates the output by
returning only the last n bits.

The design of P and Q was inspired by the Rijndael block cipher algorithm [12, 13]. This
means that their design consist of a number of rounds R, which consists of a number of round
transformations. Since P and Q are much larger than the 128-bit state size of Rijndael, most
round transformations have been redefined. In Grøstl, a total of four round transformations
are defined for each permutation. These are

• AddRoundConstant

• SubBytes

• ShiftBytes

• MixBytes.

When a distinction is necessary, the third transformation ShiftByteswill be called ShiftBytesWide

when used in the large permutations P1024 and Q1024. All other transformations can be described
in the same way for all four permutations.

A round R consists of these four round transformations applied in the above order. Hence,

R = MixBytes ◦ ShiftBytes ◦ SubBytes ◦ AddRoundConstant.

See Figure 4. We note that all rounds follow this definition. We denote by r the number of
rounds. Concrete recommendations for r will be given in Section 3.4.6.

The transformations operate on a state, which is represented as a matrix A of bytes (of
8 bits each). For the short variants, the matrix has 8 rows and 8 columns, and for the large
variants, the matrix has 8 rows and 16 columns. In the following, we denote by v the number
of columns, and we write constant byte values in sans serif font, e.g., c3. In the following, we
describe how to map a byte sequence to a state matrix and back, and then we describe each
round transformation.

3.4.1 Mapping from a byte sequence to a state matrix and vice versa

Since Grøstl operates on bytes, it is generally endianness neutral. However, we need to specify
how a byte sequence is mapped to the matrix A, and vice versa. This mapping is done in a
similar way as in Rijndael. Hence, the 64-byte sequence 00 01 02 ... 3f is mapped to an 8 × 8

6

AddRoundConstant

SubBytes

ShiftBytes

MixBytes

Figure 4: One round of the Grøstl permutations P and Q is a composition of four basic
transformations.

matrix as

00 08 10 18 20 28 30 38

01 09 11 19 21 29 31 39

02 0a 12 1a 22 2a 32 3a

03 0b 13 1b 23 2b 33 3b

04 0c 14 1c 24 2c 34 3c

05 0d 15 1d 25 2d 35 3d

06 0e 16 1e 26 2e 36 3e

07 0f 17 1f 27 2f 37 3f

.

For an 8× 16 matrix, this method is extended in the natural way. Mapping from a matrix to a
byte sequence is simply the reverse operation. From now on, we do not explicitly mention this
mapping.

3.4.2 AddRoundConstant

The AddRoundConstant transformation adds a round-dependent constant to the state matrix
A. By addition we mean exclusive-or (XOR). P and Q have different round constants, which is
the only difference between the two permutations.

The round constants can be seen as matrices of the same size as the state matrix. All round
constants bytes are zero except for a single position. The round constants used for P512 and
P1024 are basically the same: The first 8 columns do not differ for both permutations and the
last 8 columns of the round constants used in P1024 contain only bytes having the value 00.
Likewise for Q512 and Q1024.

The byte in the top leftmost corner of the round constant in round i of P has the value i; all
other positions in the round constant matrix have the value 00. In Q, the byte in the bottom

7

leftmost corner has the value i ⊕ ff, and all other bytes have the value 00. The round number
is reduced modulo 256, if necessary.

To be precise, the AddRoundConstant transformation in round i updates the state A as

A← A⊕ C[i],

where C[i] is the round constant used in round i. The round constants CP [i] and CQ[i] used in
round i of P and Q, respectively, are

CP [i] =

i 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

and CQ[i] =

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

00 00 · · · 00

i⊕ ff 00 · · · 00

.

See Figure 5.

i

AddRoundConstant of P

i⊕ ff

AddRoundConstant of Q

Figure 5: AddRoundConstant for permutations P and Q modify a single byte of the state by
adding a constant derived from the round number i.

3.4.3 SubBytes

The SubBytes transformation substitutes each byte in the state matrix by another value, taken
from the s-box S. This s-box is the same as the one used in Rijndael and its specification can
be found in Appendix B. Hence, if ai,j is the element in row i and column j of A, then SubBytes

performs the following transformation:

ai,j ← S(ai,j), 0 ≤ i < 8, 0 ≤ j < v.

See Figure 6.

3.4.4 ShiftBytes and ShiftBytesWide

ShiftBytes and ShiftBytesWide cyclically shift the bytes within a row to the left by a number
of positions. Let σ = [σ0, σ1, . . . , σ7] be a list of distinct integers in the range from 0 to v − 1.

8

S(·)

Figure 6: SubBytes substitutes each byte of the state by its image under the s-box S.

Then, ShiftBytes moves all bytes in row i of the state matrix σi positions to the left, wrapping
around as necessary. The vector σ is defined as σ = [0, 1, 2, 3, 4, 5, 6, 7] in ShiftBytes, and
σ = [0, 1, 2, 3, 4, 5, 6, 11] in ShiftBytesWide. See Figure 7.

shift by 0

shift by 1

shift by 2

shift by 3

shift by 4

shift by 5

shift by 6

shift by 7

(a) ShiftBytes

shift by 0

shift by 1

shift by 2

shift by 3

shift by 4

shift by 5

shift by 6

shift by 11

(b) ShiftBytesWide

Figure 7: The ShiftBytes and ShiftBytesWide transformations.

3.4.5 MixBytes

In the MixBytes transformation, each column in the matrix is transformed independently. To
describe this transformation we first need to introduce the finite field F256. This finite field is
defined in the same way as in Rijndael via the irreducible polynomial x8 ⊕ x4 ⊕ x3 ⊕ x⊕ 1 over
F2. The bytes of the state matrix A can be seen as elements of F256, i.e., as polynomials of
degree at most 7 with coefficients in {0, 1}. The least significant bit of each byte determines
the coefficient of x0, etc.

MixBytes multiplies each column of A by a constant 8 × 8 matrix B in F256. Hence, the
transformation on the whole matrix A can be written as the matrix multiplication

A← B ×A.

9

The matrix B is specified as

B =

02 02 03 04 05 03 05 07

07 02 02 03 04 05 03 05

05 07 02 02 03 04 05 03

03 05 07 02 02 03 04 05

05 03 05 07 02 02 03 04

04 05 03 05 07 02 02 03

03 04 05 03 05 07 02 02

02 03 04 05 03 05 07 02

.

This matrix is circulant, which means that each row is equal to the row above rotated right
by one position. In short, we may write B = circ(02, 02, 03, 04, 05, 03, 05, 07) instead. See also
Figure 8.

B = circ(02, 02, 03, 04, 05, 03, 05, 07)

Figure 8: The MixBytes transformation left-multiplies each column of the state matrix treated
as a column vector over F256 by a circulant matrix B.

3.4.6 Number of rounds

The number r of rounds is a tunable security parameter. We recommend the following values
of r for the four permutations.

Permutations Digest sizes Recommended value of r

P512 and Q512 8–256 10
P1024 and Q1024 264–512 14

3.5 Initial values

The initial value ivn of Grøstl-n is the ℓ-bit representation of n. The table below shows the
initial values of the required output sizes of 224, 256, 384, and 512 bits.

n ivn

224 00 ... 00 00 e0

256 00 ... 00 01 00

384 00 ... 00 01 80

512 00 ... 00 02 00

10

3.6 Padding

As mentioned, the length of each message block is ℓ. To be able to operate on inputs of varying
length, a padding function pad is defined. This padding function takes a string x of length N
bits and returns a padded string x∗ = pad(x) of a length which is a multiple of ℓ.

The padding function does the following. First, it appends the bit ‘1’ to x. Then, it appends
w = −N − 65 mod ℓ ‘0’ bits, and finally, it appends a 64-bit representation of (N + w + 65)/ℓ.
This number is an integer due to the choice of w, and it represents the number of message
blocks in the final, padded message.

Since it must be possible to encode the number of message blocks in the padded message
within 64 bits, the maximum message length is 65 bits short of 264− 1 message blocks. For the
short variants, the maximum message length in bits is therefore 512 · (264− 1)− 65 = 273− 577,
and for the longer variants it is 1024 · (264 − 1)− 65 = 274 − 1089.

3.7 Summary

First, a message which is to be digested by Grøstl is padded using the padding function pad.
The hash function then iterates a compression function f : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ, which is
based on two permutations P and Q. If the output size n of the hash function is at most 256
bits, we set ℓ = 512. For the longer variants, we set ℓ = 1024. Hence, we ensure that ℓ ≥ 2n for
all cases. The initial value of Grøstl-n is the ℓ-bit representation of n. At the end, the output
of the last call to f is processed by the output transformation Ω, which reduces the output size
from ℓ to n bits.

4 Design decisions and design features

In this section, we explain the design decisions made for Grøstl and some features of the Grøstl
design. First, we list a number of advantages of Grøstl compared to many other hash functions
proposed in the past.

• Security proof of the construction. The compression function construction used in
Grøstl is provably collision resistant and preimage resistant assuming that the permuta-
tions P and Q are ideal. See Section 4.1.

• Flexibility. The algorithm can be efficiently implemented on many platforms. The
security parameter r, the number of rounds, can be easily changed.

• Simplicity. Both the construction and the design of the permutations are simple and
easy to understand and remember.

• Familiarity. Being based on the well known Rijndael design, most cryptographers and
cryptographic software implementors will quickly feel acquainted with Grøstl. Moreover,
the design principles behind Rijndael have already proven themselves advantageous.

4.1 The security of the construction

The construction of the compression function f can be proved to be secure assuming that the
two permutations P and Q are ideal [20]. The security proof states that at least 2ℓ/4 evaluations
of P and/or Q are required to find a collision for the hash function that iterates f , and that
at least 2ℓ/2 evaluations are required to find a preimage. Note that these levels are the square
root of the security levels for an ideal compression function. However, since ℓ ≥ 2n, internal

11

collision and preimage attacks on the hash functions have complexities of at least 2n/2 and 2n.
This analysis assumes that the ℓ output bits of the last call to f are the final output of the hash
function. However, in Grøstl, an output transformation is applied. We discuss this output
transformation in Section 4.6.

The security proof of the compression function construction assumes that the permutations
P and Q are ideal. However, we do not claim that our permutations are ideal. We only use
the security proof of the construction to show that the construction is sound. This is similar to
using the security proof [8] of one of the PGV constructions [50] to show that this construction
is sound, without claiming that the underlying block cipher is ideal. On the other hand, an
attack that shows non-ideality of the permutations does not necessarily extend to an attack on
the hash function.

4.2 AddRoundConstant

The purpose of adding round constants is to make each round different and at the same time
this provides a natural opportunity to differentiate P and Q. If the rounds are all the same, then
fixed points x such that R(x) = x for the round function R extend to the entire permutation.
For example, if P = R10, then fixed points for R2 and R5 would also extend to P . Therefore,
one can expect several fixed points for P , whereas for an ideal permutation only a single fixed
point is expected. By choosing round-dependent constants for AddRoundConstant, we expect
the number of fixed points of P and Q to be 1.

In implementations, using two different versions of AddRoundConstant for P and Q does
not incur a large penalty, since most of the code implementing the round function can still be
shared between P and Q. We decided to use simple round constants in order to reduce the
performance penalty of this transformation. Hence, we chose to add a single byte onto a fixed
matrix position. Since this is the only transformation in which there is a difference between P
and Q, the round constants must be different.

4.3 SubBytes

The SubBytes transformation is the only non-linear transformation in Grøstl. It uses the same
s-box as used in Rijndael. For a walk-through of its properties, we refer to one of [12, 13].

The choice for this particular transformation was driven by the following reasoning:

• Size: 8-bit s-boxes are a convenient trade-off between implementation aspects (smallest
word size on popular platforms) and cryptanalytic considerations. On the other hand,
there are 28! different permutations to choose from.

• Single s-box rather than many different s-boxes: this is again a trade-off between imple-
mentation and cryptanalytic considerations.

• No random s-box: A structured s-box allows for significantly more efficient hardware
implementation than a random s-box.

• The particular structure of the chosen s-box was already proposed in 1993 [45] and has
therefore undergone a long period of study.

• Since the s-box is inherited from the AES, implementation aspects (especially in hardware)
are well studied.

12

4.4 ShiftBytes and ShiftBytesWide

We had two design criteria for ShiftBytes and ShiftBytesWide. First, we needed shift values
which result in optimal diffusion. Let νt,c(ai,j) be the number of times that a state byte ai,j

affects every state byte of column c after t rounds. In detail, νt,c(ai,j) defines how often (or in
how many ways) every state byte of column c depends on ai,j . Hence, we have full diffusion
after t rounds if νt,c(ai,j) ≥ 1 for all columns c and state bytes ai,j . In other words, each state
byte is affected by every state byte ai,j at least once. Let t∗ be the value of t for which this
happens. Then we get optimal diffusion, if min(νt∗,c(ai,j)) is maximal for a specific geometry.

Second, as this leaves a large number of set to choose from, we prefer shift values which
are similar to the AES shift values to benefit from combined implementations. Combined
implementations benefit if we shift into the same direction as AES and the values are of the
form σ = [0 + 4k0, 1 + 4k1, +4k2, 3 + 4k3, 0 + 4k4, 1 + 4k5, 2 + 4k6, 3 + 4k7] with ki ∈ {0, 1, 2, 3}.

The shift values used for P512 and Q512 are the most obvious ones. They cause optimal
diffusion after two rounds. For P1024 and Q1024 (ShiftBytesWide) we have searched for shift
values with optimal diffusion after three rounds (two rounds is not possible) and get optimal
diffusion if min(ν3,c(ai,j)) = 2. We have chosen the first set of such values when sorted in
lexicographical order, which can additionally be used for combined implementations.

4.5 MixBytes

The main design goal of the MixBytes transformation is to follow the wide trail strategy. Hence,
the MixBytes transformation is based on an error-correcting code with the MDS (maximum
distance separable) property. This ensures that both the differential and linear branch number
is 9. In other words, a difference in k > 0 bytes of a column will result in a difference of at least
9− k bytes after one MixBytes application.

Since there exist many MDS codes, we have chosen a code which can be implemented
efficiently in many settings. The MixBytes transformation multiplies each column of A with the
MDS matrix B = circ(02, 02, 03, 04, 05, 03, 05, 07) (see Section 3.4.5) over the finite field F256.
In most environments, the multiplication with a constant of this matrix is the most expensive
part. The implementation costs can be reduced by using constants of low degree. The minimum
degree of the constants for an MDS code of size 8 is 2. However, this comes at a higher cost
for the additions due to a slightly higher Hamming weight of the elements. Therefore, we have
chosen a set of values where we can compensate these costs by the possibility of combining
more intermediate results during the matrix multiplication. Especially on 8-bit platforms, this
results in more efficient implementations.

4.6 Output transformation

Since the size of the chaining variables is larger than the required output size, an output trans-
formation is needed. Simple truncation would be a possibility. However, since the compression
function is not ideal (see Section 6.2), we chose to apply a function which is believed to be
one-way and collision resistant, but does not compress before the truncation.

Let ω(x) = P (x) ⊕ x. The Matyas-Meyer-Oseas construction [36] for hash functions based
on block ciphers provides a compression function g based on the encryption function EK (with
K being the key) as follows:

g(h, m) = Eh(m)⊕m.

This function g has been proved to provide a collision resistant and one-way hash function
when iterated in the Merkle-Damg̊ard mode [8], under the assumption that E is an ideal block
cipher. This implies that g is collision resistant and one-way if h is fixed, since this corresponds

13

to hashing a one-block message. Hence, g̃(m) = Eh∗(m) ⊕ m, where h∗ is a constant, is
one-way and collision resistant as well. Since g̃ = ω with P = Eh∗ , we believe that ω is one-
way and collision resistant. This seems to make it difficult to attack Grøstl via the output
transformation.

4.7 Number of rounds

The choice of the (recommended) number of rounds is in part based on the preliminary crypt-
analysis results described in Section 6. In particular, the square/integral attack indicates that
the permutations might be distinguishable from ideal if the number of rounds is 7 or less in
the short variants, and 9 or less in the long variants. The final choice of the number of rounds
provides a reasonably large security margin.

4.8 Absence of trap-doors

It should be clear that all constants used in Grøstl, including the s-box, have been selected in a
way that does not leave enough freedom to deliberately insert trap-doors in the hash function.
In general, we faithfully declare that we have not inserted any hidden weaknesses in Grøstl.

5 Modes of use for Grøstl

Grøstl can be used in a “randomisation mode”, e.g., as a message authentication code. Such
modes include an additional input, which can be a key, a salt, a randomisation value, etc. We
believe that Grøstl is secure when used in existing randomisation modes making use of a hash
function, but we also propose a dedicated MAC mode for Grøstl.

5.1 Message authentication

HMAC [5, 43] is a method of constructing a message authentication code (MAC) from a hash
function. Given a message M , a key K and a hash function H, the HMAC construction is
defined as follows.

HMAC(K, M) = H(K ⊕ opad‖H(K ⊕ ipad‖M)),

where K is K padded to a length equal to the block length of the hash function, and ipad

and opad are two different constants as defined in [5]. HMAC has been proven to be secure if
the compression function of the underlying hash function is a “dual” PRF [4]. A compression
function is a dual PRF if it is a PRF when keyed via either the message block or the chaining
input. We believe HMAC based on Grøstl is a secure MAC.

The HMAC construction requires two calls to the hash function, which in the case of Grøstl
means that the output transformation must be evaluated twice. A more efficient method is the
envelope construction [51]:

MAC(K, M) = H(K‖M‖K), (2)

where M is M padded to a multiple of ℓ bits, and K is K padded to ℓ bits. We propose this
envelope construction as a dedicated MAC mode using Grøstl. This construction has been
proved to be a secure MAC under similar assumptions as HMAC [56]. For the security proof
to hold, the key must be processed in blocks that are separate from the blocks of the message
M , which explains the additional padding required.

14

5.2 Randomised hashing

In order to free the security of digital signatures from relying on the collision resistance of a
hash function, the input message to the hash function can be randomised using a fresh random
value z for every signature following the technique outlined in [15,24]. The randomised message
is then processed using the hash function. This procedure is called randomised hashing. Let the
message be M , padded to a multiple of the message block length, and split into message blocks
m1, . . . , mt. The randomised variant H̃ of the hash function H given randomisation value z is
then (roughly) defined as

H̃(z, M) = H(z‖(m1 ⊕ z)‖(m2 ⊕ z)‖ . . . ‖(mt ⊕ z)).

We believe Grøstl to be suitable for use in this randomisation mode.
Being suitable for randomised hashing requires that the following attack [44] has complexity

at least 2n−k. The attacker chooses a message M of length at most 2k bits. The attacker then
receives a randomly chosen randomisation value z (not under the control of the attacker). The
value y = H̃(z, M) is computed, and the attacker’s task is now to find a pair (z∗, M∗) 6= (z, M)
such that H̃(z∗, M∗) = y. When Grøstl is used in the mentioned randomisation mode, we
restrict the length of the randomisation value to at most n bits.

5.3 Security claims for the mentioned modes of operation

We claim the following security levels for the applications where Grøstl-n is deployed. The
claimed complexity of the “randomised hashing attack” assumes a first message of at most 2k

blocks.

Attack type Claimed complexity Best known attack

Forgery on n-bit HMAC 2n/2 2n

Key recovery on n-bit HMAC 2|K| 2|K|

Forgery on n-bit envelope MAC 2n/2 2n

Key recovery on n-bit envelope MAC 2|K| 2|K|

Randomised hashing 2n−k 2n

6 Cryptanalytic results

In this section, we describe some preliminary cryptanalysis results on Grøstl, and we state our
security claims

6.1 Attacks exploiting properties of the permutations

We first consider well known attack methods that aim to exploit potential weaknesses in the
permutations P and Q.

6.1.1 Differential cryptanalysis

The permutations P and Q have diffusion properties according to the wide trail design strategy.
Since the MixBytes transformation has branch number 9, and ShiftBytes is diffusion optimal
(moves the bytes in each column to eight different columns), it is guaranteed that for Grøstl

there are at least 92 = 81 active s-boxes in any four-round differential trail [13, Theorem
9.5.1]. Note that this holds for Grøstl-256 as well as for Grøstl-512. Hence, there are at
least 2 · 81 = 162 and 3 · 81 = 243 active s-boxes in any eight-round, respectively twelve-round

15

differential trail. This, combined with the maximum difference propagation probability of the
s-box of 2−6, means that the probabilities of any differential trail (assuming independent rounds)
over eight and twelve rounds (for either P or Q) are expected to be at most 2−6·162 = 2−972,
respectively 2−1458. Therefore, in a classical differential attack where one specifies a differential
trail for every round for both P and Q, there is only a very small chance that this would lead
to a successful attack for Grøstl-256 and Grøstl-512.

In the collision attack [48] on Grindahl-256 [30], the low probability of any difference propa-
gation through the s-box is circumvented by ignoring the actual values of differences, and instead
only considering whether a byte is active or not. Since in Grindahl, a message block overwrites
part of the state, the actual values of any differences in this part of the state are irrelevant.
This approach means that the probabilistic behaviour of the hash function is now related to the
MixColumns/MixBytes transformation, since without knowing the value of an input difference,
one cannot predict the output difference. On the other hand, the number of degrees of freedom
is essentially doubled, since one does not need to consider a fixed input/output difference. The
relatively slow diffusion of Grindahl-256 combined with the continuous ability to influence the
state led to the collision attack. In the Grøstl permutations, this approach will result in a
complexity well above that of a birthday attack because diffusion is more effective (requiring
only two rounds compared to four), and the attacker does not have continuous control over parts
of the state. Moreover, since no part of the state is discarded (until the output transformation
in the end), the actual value of a difference is significant and therefore, it seems that any input
or output difference will have to (probabilistically) match a given difference.

6.1.2 Linear cryptanalysis

Linear and differential trails propagate in a very similar way. Since the MixBytes transformation
has linear branch number 9, it is guaranteed that for Grøstl there are at least 92 = 81 active
s-boxes in any four-round linear trail [13, Theorem 9.5.1]. Hence, there are at least 2 · 81 = 162
and 3 · 81 = 243 active s-boxes in any eight-round, respectively twelve-round linear trail. Since
the s-box has maximum correlation of 2−3, the maximum correlation for any four-round linear
trial is 2−3·81 = 2−243. This means that the correlation of any linear trail over eight and twelve
rounds (for either P or Q) are expected to be at most 2−3·162 = 2−486, respectively 2−729.

6.1.3 Integrals

Some of the best known attacks on AES are based on so-called integrals [11, 31]. Integrals can
be specified also for Grøstl, and although it has not been shown how to utilise integrals in
attacks on a hash function, they might say something about the used structure.

Integrals for Grøstl-256 are very similar to integrals for AES. We have identified an integral
with 2120 texts over 6 rounds of Grøstl-256. The texts in this collection are balanced in every
byte of the input and output. Also, we identified an integral with 2120 texts over 7 rounds of
Grøstl-256. The texts in this collection are balanced in every byte of the input and balanced
in every bit of the output. These are similar to the integrals for AES reported in [31]. Note
that for AES reduced to 7 rounds, the last round is special. This is not the case for Grøstl.

We have identified integrals for Grøstl-512 for up to 9 rounds. For an 8-round variant the
texts are balanced in every byte of the input and output; for an 9-round variant the texts are
balanced in every byte of the input and in every bit of the output. For both these integrals, the
number of texts is 2704.

With the chosen number of rounds in the Grøstl permutations, 10 respectively 14, we
believe it is safe to conclude that integrals cannot be used to show any non-random behaviour
of Grøstl.

16

6.1.4 Algebraic cryptanalysis

It is well-known [10] that one can establish 39 quadratic equations (equations of degree two) over
F2 in the input and output bits of the AES s-box, and there is one additional quadratic equation
of probability 255

256 for the AES s-box. Hence, this is also the case for the s-box in Grøstl. There
is a total of 200 s-box applications for one encryption of the AES. Using these 40 equations
for AES, it has been shown that from a single AES encryption, one can establish a set of 8000
quadratic equations in 1600 variables (unknowns). The solution of these equations can be used
to derive the value of the secret key used in the encryption. The time complexity to solve the
above mentioned system of equations for AES is unknown; to the best of our knowledge, it has
not been shown that this can lead to an attack faster than an exhaustive search for the key.

For comparison, there is a total of 1280 s-box applications in the compression function of
Grøstl-256 and a total of 3584 s-box applications in the compression function of Grøstl-512.
It is clear that there are some advantages in an algebraic attack on a hash function compared to
a similar attack on a block cipher, since there are no secret keys in the former. However, given
that the number of s-box applications is much larger for Grøstl than for AES, we think it is
safe to conclude that if an efficient algebraic attack method should be found which exploits the
quadratic s-box equations in Grøstl, then a similar attack would be able to break the AES.

6.2 Generic collision attacks

This section deals with collision attacks that do not depend on weaknesses in P and Q. We
distinguish between collision attacks on the compression function, and collision attacks on the
hash function. Collision attacks on the compression function, where the chaining input is
determined by the attack (and is not under the direct control of the attacker), cannot be
directly extended to cover the full hash function. The security proof of the construction (1)
relates to collision attacks on the hash function. Hence, we cannot rule out the possibility of
generic attacks on the compression function below the 2ℓ/4 bound. However, there are good
reasons to believe that the bound holds also for the compression function as will be shown next.

6.2.1 Collision attacks on the compression function

Wagner’s generalised birthday attack [53] applies to the compression function f : form four
lists via the two functions fP (x) = P (x) ⊕ x and fQ(x) = Q(x) ⊕ x. Note that f(h, m) =
fP (h⊕m)⊕fQ(m). Find a quadruple (x, x∗, y, y∗) such that fP (x)⊕fP (x∗)⊕fQ(y)⊕fQ(y∗) = 0.
Then the two pairs (x⊕ y, y) and (x∗ ⊕ y∗, y∗) collide.

This attack has complexity 2ℓ/3, and hence is faster than a birthday attack on the compres-
sion function. Note that this is still above the proven bound of 2ℓ/4 and above the complexity of
a birthday attack on the hash function, since n ≤ ℓ/2. The attack does not provide the attacker
with much control over the chaining input, and hence we do not see any methods to extend the
attack to the full hash function.

Wagner notes that if fP and fQ are considered random functions, then finding a quadruple
(x, x∗, y, y∗) such that fP (x)⊕fP (x∗)⊕fQ(y)⊕fQ(y∗) = 0 has complexity at least 2ℓ/4. Assuming
this is correct, the complexity extends to the full hash function (where the output transformation
is omitted) via the same proof as that of the Merkle-Damg̊ard construction [14,40].

Wagner’s generalised birthday attack is the best attack on the compression function we are
aware of. We note that in a Merkle-Damg̊ard hash function, a collision attack on the compression
function always extends to a pseudo- or free-start collision attack on the hash function. Hence,
Wagner’s generalised birthday attack can be used to carry out a free-start collision attack on

17

Grøstl in time 2ℓ/3. Again, we remind the reader that this complexity is above the complexity
of a birthday attack on Grøstl.

6.2.2 Collision attacks on the hash function

The construction (1) is provably collision resistant up to the level of 2ℓ/4 permutation calls. Still,
no collision attack of this complexity is known when the permutations are assumed to be ideal.
The best known collision attack requires 23ℓ/8 permutation calls [20], but the true complexity in
terms of compression function call equivalents is higher than 2ℓ/2. Hence, a rather large security
margin remains.

6.3 Generic attacks on the iteration

The internal state being at least twice the size of the hash value for all versions of Grøstl,
generic attacks applying to the Merkle-Damg̊ard construction cannot be applied to Grøstl

directly via brute force or birthday attacks. However, since the construction used for Grøstl

does not achieve security comparable to an ideal iterated hash function with the same internal
state size, we do not claim that generic attacks do not apply using some other methods than
the standard brute force and birthday attacks.

6.3.1 Multicollision attack

Recall that a d-collision is a set of d messages that all collide pairwise. The multicollision
attack of Joux [27] on iterated hash functions applies also to Grøstl; the complexity to find
a d-collision is roughly log2(d)2ℓ/2 ≥ log2(d)2n. This should be compared to a brute-force
multicollision attack on the hash function for which the complexity is around (d!)1/d · 2n(d−1)/d.
For values of d and n of cryptographic relevance, the brute-force attack is always faster than
Joux’s approach.

6.3.2 Second preimage attack

The second preimage attack of Kelsey and Schneier [29] on the Merkle-Damg̊ard construction
also seems to be complicated by the large internal state size. For an n-bit iterated hash function
based on an n-bit compression function, given a first preimage of length 2k message blocks this
attack finds a second preimage of the same length in 2n−k evaluations of the compression
function. A variant of this attack was published in [2]. Using the techniques of [2, 29], the
complexity of carrying out the second preimage attack on Grøstl given a 264-block first preimage
is about 2ℓ−64. For all the message digest sizes of Grøstl, this complexity is well above 2n−k.
Hence, our claimed security level for the second preimage resistance is at least 2n−k for any first
message of at most 2k blocks. However, we do not know of an attack with complexity below 2n.

6.3.3 Length extension attack

The length extension attack on Merkle-Damg̊ard hash functions works as follows. Let (M, M∗)
be a collision for the hash function H, with |M | = |M∗|. H pads M and M∗ to M and M

∗

before hashing, and by choosing any message suffix y, we have that B = M‖y and B∗ = M
∗
‖y

also collide. Hence, a single collision gives rise to many new collisions that “come for free”.
The length extension method is not trivial to carry out in Grøstl, unless the messages

collide before the output transformation. Finding a collision before the output transformation
takes time 2ℓ/2 ≥ 2n by the birthday attack. As mentioned several times, there may be collision

18

attacks on the hash function with the output transformation omitted, that have complexity
below the birthday attack, but we do not know of any such attack.

A related weakness of the Merkle-Damg̊ard transformation is the following. Assume the two
values H(M) and |M | are known, but M itself is not. Knowing |M |, one also knows how M
was padded, and hence for any suffix y, one may compute H(M‖y), where M is the padded
version of M , without knowing M . This weakness leads to attacks when a Merkle-Damg̊ard
hash function underlies a secret prefix MAC. In Grøstl, this attack does not seem possible due
to the output transformation.

6.4 Fixed points

Most existing hash functions, for instance SHA-1 and SHA-2, are based on the Davies-Meyer
construction [36], and hence fixed points can be easily found for these hash functions [41]. Some
applications where this property can be used to attack hash functions have been identified, for
instance, in finding an expandable message to carry out the second preimage attack [17, 29].
However, finding an expandable message is only one part of the second preimage attack, and in
most cases it is not the most time-consuming task.

Fixed points can also be efficiently found for the compression function f of Grøstl: Choose
m arbitrarily, and let h = P−1(Q(m)) ⊕ m. Then f(h, m) = h. Hence, h is computed as a
(claimed) one-way function of m, and therefore is not under the direct control of the attacker.

In the case of Grøstl, we note that the internal state is at least twice the size of the hash
value, and hence the cost of constructing, e.g., an expandable message using fixed points is
expected to be about 2ℓ/2 ≥ 2n.

6.5 Security claims and summary of known attacks

With the number of rounds proposed in Section 3.4.6, we claim the following security levels for
the Grøstl-n hash function. In the second preimage attack, the first preimage is assumed to
be of length at most 2k blocks.

Attack type Claimed complexity Best known attack

Collision 2n/2 2n/2

d-collision lg(d) · 2n/2 (d!)1/d · 2n(d−1)/d

Preimage 2n 2n

Second preimage 2n−k 2n

Even though compression function attacks do not necessarily translate into attacks on the
hash function, we claim the following properties for the compression function:

Attack type Claimed complexity Best known attack

Collision 2ℓ/4 2ℓ/3

Preimage 2ℓ/2 2ℓ/2

7 Implementation aspects

Like Rijndael, Grøstl can be efficiently implemented on a wide variety of processors and allows
many trade-offs between resource requirements (memory, registers) and speed. In this section,
we describe and estimate performance and resource requirements of implementations on 64-,
32-, and 8-bit architectures, as well as on ASICs and FPGA hardware. As Grøstl is designed
to prevent preference for a particular word size, this will also allow efficient implementation of
future architectures (like Intel’s AVX with 256-bit registers [26]).

19

7.1 Software implementations

In software, Grøstl is targeted 64-bit processors, but performance is nearly as good on 32-bit
processors offering MMX instructions.

7.1.1 64-bit processors

Grøstl can be efficiently implemented on 64-bit processors following a technique very similar
to the efficient 32-bit implementation of Rijndael [12]. Consider an implementation of the
round function of P512 focusing on the effect on column 0. Assume that the AddRoundConstant

transformation adds the byte C to a0,0. Note that the new column 0 after the round function has
been applied depends solely on the 8 bytes ai,i, 0 ≤ i < 8, because the ShiftBytes transformation
moves these bytes into column 0.

As an example, the round function has the following effect on a0,0, the new value of which
we denote by a′0,0.

a′0,0 ← 02× S(a0,0 ⊕ C)⊕ 02× S(a1,1)⊕ 03× S(a2,2)⊕ 04× S(a3,3)⊕

05× S(a4,4)⊕ 03× S(a5,5)⊕ 05× S(a6,6)⊕ 07× S(a7,7).

Similarly, the effect on a1,0 is

a′1,0 ← 07× S(a0,0 ⊕ C)⊕ 02× S(a1,1)⊕ 02× S(a2,2)⊕ 03× S(a3,3)⊕

04× S(a4,4)⊕ 05× S(a5,5)⊕ 03× S(a6,6)⊕ 05× S(a7,7).

If we continue, we see that, e.g., a0,0 affects every byte of the column by the addition of
b×S(a0,0⊕C), where b is a value from the first column of the matrix B (defined in Section 3.4.5).
Hence, when the column is represented by a 64-bit word in an implementation, we may compute
the effect of a0,0 on all bytes in the new column 0 by a single table lookup, the output of which
is exactly 8 concatenations of b× S(a0,0 ⊕ C), with b varying as defined by the matrix B. Let
the table be T0 containing 256 64-bit words. The value T0[i] at index i (ignore the addition of
C for a moment) will then be

02× S(i) ‖ 07× S(i) ‖ 05× S(i) ‖ 03× S(i) ‖ 05× S(i) ‖ 04× S(i) ‖ 03× S(i) ‖ 02× S(i),

interpreted as an 8-byte (64-bit) word. Here, we define the first byte of the word to mean the
byte of row 0 in A. In practice, the most convenient ordering depends on the endianness of
the processor (the ordering used above is more convenient on big-endian processors, whereas on
little-endian processors the byte ordering should be reversed).

A byte in a different row affects the column in a different way, and hence we must define 8
different tables T0, . . . , T7. The only difference between them is the ordering of the bytes; they
are rotated versions of each other, since the matrix B is circulant. To save space, a single table
can be used, and the rotations can be done afterwards.

To sum up, column 0 can be computed as

T0[a0,0 ⊕ C]⊕ T1[a1,1]⊕ T2[a2,2]⊕ T3[a3,3]⊕ T4[a4,4]⊕ T5[a5,5]⊕ T6[a6,6]⊕ T7[a7,7],

hence using 8 table lookups and 8 XORs (7 for all other columns, since adding C is only needed
in column 0).

When the columns are internally represented as 64-bit words, in most programming lan-
guages we don’t have direct access to the bytes ai,i, and hence we must access them by a
right-shift and a logical and. However, many processors provide instructions for accessing a
particular byte of a word.

20

We note that this technique requires storing 8 tables of 256 64-bit words, taking up 16
kilobytes of memory. As mentioned, a single table of 2 kilobytes can be used instead, but then
a rotation is needed for every 7 out of 8 table lookups. This can be generalised; with k tables,
8− k rotations are needed for every 8 table lookups. A crude estimate on the performance loss
with 0 < k ≤ 8 tables compared to 8 tables is a factor about 23−k

15 . This is based on the estimate
that a rotation, a table lookup, and an XOR take about the same time to carry out.

7.1.2 32-bit processors

On a 32-bit processor the above technique cannot be applied directly, but there is a (slower)
variant operating with 32-bit words. This method requires half the amount of memory compared
to the 64-bit implementation described above, and (roughly) twice the amount of computation.
For more details we refer to the Whirlpool specification [3]. The same time/memory trade-offs
as mentioned above are possible.

On 32-bit microprocessors with SIMD instruction sets such as MMX, SSE, or SSE2, an imple-
mentation like the one described for 64-bit processors is possible. Some overhead is introduced
compared to the implementation on a native 64-bit processor, but nevertheless, performance on
such 32-bit processors is almost as good as on a 64-bit processor. Most modern 32-bit processors
used in personal computers provide these instruction sets. These include virtually all Intel and
AMD processors since 1997.

7.1.3 8-bit processors

On 8-bit processors, the round transformations can be applied individually on a byte-by-byte
basis. Both the SubBytes and the MixBytes operation can be efficiently realised with lookups in
small tables or computed without lookup tables. Various implementation techniques that allow
a trade-off between memory usage and performance are possible. Especially in the computation
of the MixBytes operation, many intermediate results can be reused depending on the memory
requirements. Note that there is no setup time needed for the 8-bit implementation of Grøstl.

As an example for possible trade-offs, preliminary implementation results suggest that
Grøstl-256 and Grøstl-224 can be implemented with a performance of (roughly) between
400 and 500 cycles/byte on an 8-bit AVR micro-controller (ATmega163)2 using between less
than 100 bytes and 850 bytes of RAM, and a code size of less than 1KB. The code includes a
256-byte lookup table for SubBytes and up to two 256-byte lookup tables for the multiplication
with the constant 02 and/or 04 in the finite field F256 for MixBytes.

Table 1: Examples for Grøstl performance estimates for long messages on 8-bit implementations
on the ATmega163 micro-controller.

Hash function Processor Memory (bytes) Speed (cycles/byte)

Grøstl-224/256
ATmega163 <100 475
ATmega163 850 415

Grøstl-384/512
ATmega163 <200 665
ATmega163 950 580

2Running at e.g., 8MHz with no operating system

21

7.2 Benchmarks on PC platforms

The performance in software of the submitted optimised Grøstl implementations in ANSI C
has been tested on a number of combinations of processors, operating systems, and compilers.
The benchmarks refer to the hash computation of long messages.

The processors used in the tests are shown in the table below (the IDs are supposed to
be mnemonics and will be used in place of the long description in the presentation of the test
results).

ID Processor Clock speed Native word size

C2D Intel Core 2 Duo E4600 2.4 GHz 64 bits
PM Intel Pentium M 760 2.0 GHz 32 bits

The amount of random access memory available is 2 GB for the C2D processor, and 1 GB for
the PM processor. The operating systems used can be found in the table below.

ID Operating system (OS)

Vis32 Microsoft Windows Vista 32-bit
Vis64 Microsoft Windows Vista 64-bit
XP Microsoft Windows XP 32-bit
Ubu32 GNU/Linux Ubuntu 8.04 32-bit
Ubu64 GNU/Linux Ubuntu 8.04 64-bit

Finally, the compilers used and the flags set in these can be found in the table below.

ID Compiler Version Flags

gcc64 gcc 4.2.4 -O3 -funroll-loops

-fno-regmove -fmodulo-sched

icc64 Intel C compiler 10.1 -O3 -xP -ipo

icc32 Intel C compiler 10.0 -O3 -xN -ipo

VS64 Visual Studio 2005 (64-bit) 8.0 /O2 /Ot /GL /LTCG

VS32 Visual Studio 2008 (32-bit) 9.0 /O2 /Ot /GL /LTCG

In all except a single case, the 32-bit optimised implementation was used when compiled in
32-bit mode (the compiler ID ends with 32), and the 64-bit optimised implementation was used
when compiled in 64-bit mode. The exception is the compiler icc32, which used the optimised
64-bit implementation, since this turned out to be faster.

Table 2 presents the benchmarking results. The implementations were developed in a Linux
environment, and hence do not perform as well in a Windows environment. We expect that
the differences would cancel out if the implementations were targeted the Windows/Visual
Studio combination. It is also expected that the relatively poor performance in 32-bit mode can
be improved significantly. See also the section below on 32-bit implementations using MMX
intrinsics.

7.2.1 Algorithm setup time

Grøstl spends virtually no setup time before a message can start to be digested. All that
is required is to check that the requested output size is a valid one, and if so initialise the
state, clear the message block buffer, and reset the block counter. In practice, time for memory
allocation will often also be needed.

To demonstrate, we counted the number of cycles required to run the Init() function of
the optimised implementations. The results are shown in Table 3. We stress that these timings
include the time needed for memory allocation.

22

Table 2: Benchmarks of the optimised Grøstl implementations.

Hash function Processor OS Compiler Speed (cycles/byte)

Grøstl-224/256

C2D Ubu64 gcc64 25.7
C2D Ubu64 icc64 25.4
C2D Vis64 VS64 27.5
C2D Vis32 VS32 77.9
PM Ubu32 icc32 65.2
PM XP VS32 79.8

Grøstl-384/512

C2D Ubu64 gcc64 45.0
C2D Ubu64 icc64 36.9
C2D Vis64 VS64 42.2
C2D Vis32 VS32 123.4
PM Ubu32 icc32 85.8
PM XP VS32 126.8

Table 3: The number of cycles required to run the Init() function. In all cases, the gcc

compiler (v. 4.2.4) was used in Ubuntu 8.04 with optimisation flag -O3.

Hash function Processor OS Cycles for Init()

Grøstl-224/256
PM Ubu32 335
C2D Ubu64 336

Grøstl-384/512
PM Ubu32 478
C2D Ubu64 528

7.2.2 Additional implementations

Implementations in C using MMX intrinsics have also been developed. The results are promis-
ing, as can be seen in Table 4. Compared to the implementations benchmarked in Table 2,
these implementations show much better performance in 32-bit mode.

Table 4: Grøstl benchmarks for an implementation using MMX intrinsics. In all cases, the gcc
compiler (v. 4.2.4) was used in Ubuntu 8.04 with optimisation flags -O3 -mmmx.

Hash function Processor OS Speed (cycles/byte)

Grøstl-224/256
PM Ubu32 28.9
C2D Ubu64 31.7

Grøstl-384/512
PM Ubu32 67.4
C2D Ubu64 63.9

7.3 Hardware implementations

Potential settings and scenarios for hardware implementations can be at least as diverse as for
software implementations. The many different ways to implement Grøstl allow for a wide range
of trade-offs between throughput, latency, gate count, power consumption, etc. Grøstl can be
implemented efficiently on architectures with data paths starting from 8-bit up to 1024-bit. In
the following, we will give estimates and first implementation results for some extreme examples.

23

7.3.1 Low-gate count implementations

To illustrate the multitude of different implementation trade-off possibilities the design offers,
we also consider implementations where very small area requirements and very low-power re-
quirements are important.

We estimate that Grøstl-256 and Grøstl-224 can be implemented on an ASIC with standard-
cell libraries requiring an area of less than 15000 gate equivalents (GE). The dominating factor
here is the memory. We use 12390 GE for register-based RAM in our estimate instead of RAM
hard-macros. Since low gate count implementations are usually also low-power implementa-
tions, the register-based RAM can be used to minimise power consumption by clock gating.
We base our estimates on numbers obtained from actual implementations of the AES and other
algorithms [18, 19]. This results in 354 GE for the SubBytes and 800 GE for the MixBytes

transformation of Grøstl-256. Table 5 gives an overview for all Grøstl variants.

Table 5: Estimates for a low-power architecture with an 8-bit data path implementation of
Grøstl, that also has a low gate count.

Part GE
Grøstl-224/256 Grøstl-384/512

RAM 12390 24780
SubBytes 354 354
MixBytes 800 800
Others (conservative) 1400 2000

Sum < 15000 < 28000

7.3.2 High-throughput implementations

High-throughput implementations of Grøstl can be developed using data paths up to 512 or
1024 bit. Further, the execution of the two permutations can be implemented in parallel or
pipelined and interleaved. This results in 1 cycle per round and 10 or 14 cycles per compression
function computation. Preliminary implementation results of Grøstl using a 0.18µm standard
cell library are given in Table 6. In these high-throughput implementations the permutations P
and Q are computed in parallel and use a 512-bit or 1024-bit data path for each permutation.
The s-box is implemented in combinational logic [9].

Table 6: Grøstl implementation results for high-throughput ASIC implementations using a
0.18µm technology.

Hash function Data path Size (GE) Throughput (Mbit/s) Frequency (MHz)

Grøstl-224/256 512-bit 130640 4379 85.5

Grøstl-384/512 1024-bit 340498 6225 85.1

7.3.3 FPGA implementations

We base our estimates for the 64-bit FPGA implementations of Grøstl on the Whirlpool
implementations of [49] on a Xilinx Virtex 2P (xc2vp40-7fg676) device. The gate count and
throughput of Grøstl-256 is similar to that of Whirlpool-512 if an 8-bit lookup table is used
for the s-box implementation. In [49], the Whirlpool s-box is implemented using 4-bit lookup
tables. Since this is not possible for Grøstl, an 8-bit lookup table or an implementation in

24

combinational logic has to be used. This may result in about two times the area requirements,
which has been taken into account in our estimates. For the Grøstl-512 estimation, the area is
doubled due to the data path of 1024-bit. The throughput is about 1.5 times higher since more
rounds are used but the block size is doubled.

Additionally, two preliminary implementation results of a high-throughput FPGA imple-
mentation on a high-end Xilinx Virtex-5 (xc5vlx110-3ff1760) and a standard Xilinx Spartan
3 (xc3s5000-5fg676) are given in Table 7. In both implementations, the s-box is implemented
using hardware lookup tables. The permutations P and Q are computed in parallel and use
512-bit and 1024-bit data paths for Grøstl-256 and Grøstl-512, respectively. Note that the
number of CLB slices is a device dependent measure and does not allow direct comparisons.

Table 7: Grøstl implementation results and estimates(∗) for FPGA implementations using a
64-bit data path and high-throughput implementations for 512-bit or 1024-bit data paths.

Hash function Data path Device Size Throughput Frequency
(CLB slices) (Mbit/s) (MHz)

Grøstl-224/256
64-bit∗ Virtex 2P 3000-4000 400 75-125
512-bit Spartan 3 6582 4439 86.7
512-bit Virtex 5 1722 10276 200.7

Grøstl-384/512
64-bit∗ Virtex 2P 6000-8000 300 35-60
1024-bit Spartan 3 20233 5901 80.7
1024-bit Virtex 5 5419 15395 210.5

7.4 Implementation attacks

Whenever a key is handled by a machine that implements a cryptographic mechanism in addition
to inputs and outputs, various side-channel information may be available to an attacker. Sources
for such side-channels can be (but are not limited to) timing information, power consumption
and electromagnetic emanations, error messages, etc.

7.4.1 Cache based timing attacks

Cache based timing attacks have been mentioned, discussed and investigated in [6,7,32,47,52].
Bit-slicing techniques applied to Grøstl allow for implementations that are resistant against
cache based timing attacks. In the case of AES, implementations using these techniques are
in fact the fastest on many modern platforms. Also for Grøstl, we do not expect a severe
performance loss when using such an implementation technique.

7.4.2 Power- and EM side-channel attacks

Published in 1999 [33], side-channel attacks that exploit information from the power consump-
tion in the form of differential power analysis (DPA) attacks and electromagnetic emanations
turn out to be a real threat for many implementations. Many generic (e.g., dual-rail logic)
countermeasures and countermeasures specialised for particular algorithms have been proposed
since then. Again, the similarity of our proposal to the AES allows to reuse many ideas from
previous work.

Popular MAC implementations such as HMAC-SHA-1 and HMAC-SHA-2 have been exposed
to DPA attacks [34, 37]. MACs constructed using block cipher based hash functions can be
analysed against side channel attacks by assuming that the block cipher or the compression

25

function is side channel resistant. Under this assumption, DPA attacks on several hash function
based MACs including HMAC instantiated with the provably secure block cipher based hash
functions were demonstrated in [21, 22, 46]. For Grøstl we note here that these observations
do not seem to be directly applicable.

7.4.3 On countermeasures

The in Section 7.4.1 mentioned work on constant-time implementations of AES, and the huge
body of work on countermeasures against power- and EM side-channel attacks (see e.g., [35]
for a good overview) which is also primarily applied to AES, give a sound basis to counter
implementation attacks. On top of that, instruction set extensions that are frequently proposed
by CPU manufacturers may be used as well. Preliminary implementation results suggest that
the new crypto-related instructions, which Intel is going to introduce in upcoming versions of
their CPUs [25], can efficiently be used to implement Grøstl in a constant-time manner and
hence resistant against timing attacks.

Grøstl was, on purpose, not designed to use such instructions directly, as diffusion and
confusion would be affected and all other platforms penalised. Still, this yet again serves as a
powerful illustration for the many ways Grøstl can be implemented.

8 Conclusion

The SHA-3 candidate Grøstl has been proposed. Grøstl is a permutation-based hash function,
based on a construction which is provably collision resistant when the permutations are assumed
to be ideal. The particular permutations used in Grøstl are based on components of the Rijndael
block cipher. As an effect of this, Grøstl has excellent diffusion and confusion properties. The
design of Grøstl is very simple and easy to understand. Therefore, it is relatively easy to identify
possible attacks and thereby easy to gain confidence in the strength of the construction. We
believe that Grøstl is a very strong hash function, yet it can be efficiently implemented on a
wide range of platforms. Reference and optimised implementations, test vectors, this document
and other information on Grøstl is available at [23].

Acknowledgements

A number of people contributed or influenced this proposal in some way. Here we want to thank
them (in alphabetical order).

Zoran Milinkovic, for discussions on his implementation of earlier versions of the design.
Thomas Peyrin, for discussions on early design considerations. Vincent Rijmen, for insightful
comments on various aspects of the design. Stefan Tillich, for discussion on many implementa-
tion aspects, and having an influential role in the selection of the MixBytes and ShiftBytesWide

transformations. Jürgen Windhaber, for discussions on his implementation of earlier versions
of the design. Sébastien Zimmer, for providing us an early version of [20].

26

References

[1] R. J. Anderson and E. Biham. TIGER: A Fast New Hash Function. In D. Gollmann, editor,
Fast Software Encryption 1996, Proceedings, volume 1039 of Lecture Notes in Computer
Science, pages 89–97. Springer, 1996.

[2] E. Andreeva, C. Bouillaguet, P.-A. Fouque, J. J. Hoch, J. Kelsey, A. Shamir, and S. Zimmer.
Second Preimage Attacks on Dithered Hash Functions. In N. Smart, editor, Advances in
Cryptology – EUROCRYPT 2008, Proceedings, volume 4965 of Lecture Notes in Computer
Science, pages 270–288. Springer, 2008.

[3] P. S. L. M. Barreto and V. Rijmen. The Whirlpool Hashing Function. Submitted to
NESSIE, September 2000. Revised May 2003. Available: http://paginas.terra.com.

br/informatica/paulobarreto/WhirlpoolPage.html (2008/07/08).

[4] M. Bellare. New Proofs for NMAC and HMAC: Security Without Collision-Resistance. In
C. Dwork, editor, Advances in Cryptology – CRYPTO 2006, Proceedings, volume 4117 of
Lecture Notes in Computer Science, pages 602–619. Springer, 2006.

[5] M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash Functions for Message Authenti-
cation. In N. Koblitz, editor, Advances in Cryptology – CRYPTO ’96, Proceedings, volume
1109 of Lecture Notes in Computer Science, pages 1–15. Springer, 1996.

[6] D. J. Bernstein. Cache-timing attacks on AES. Available: http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf (2008/10/30).

[7] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and G. Palermo. AES Power Attack
Based on Induced Cache Miss and Countermeasure. In International Conference on In-
formation Technology: Coding and Computing (ITCC 2005), Proceedings, volume 1, pages
586–591. IEEE Computer Society, April 2005.

[8] J. Black, P. Rogaway, and T. Shrimpton. Black-Box Analysis of the Block-Cipher-Based
Hash-Function Constructions from PGV. In M. Yung, editor, Advances in Cryptology –
CRYPTO 2002, Proceedings, volume 2442 of Lecture Notes in Computer Science, pages
320–335. Springer, 2002.

[9] D. Canright. A Very Compact S-Box for AES. In J. R. Rao and B. Sunar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2005, Proceedings, volume 3659
of Lecture Notes in Computer Science, pages 441–455. Springer, 2005.

[10] N. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined Systems of
Equations. In Y. Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, Proceedings,
volume 2501 of Lecture Notes in Computer Science, pages 267–287. Springer, 2002.

[11] J. Daemen, L. R. Knudsen, and V. Rijmen. The Block Cipher Square. In E. Biham, editor,
Fast Software Encryption 1997, Proceedings, volume 1267 of Lecture Notes in Computer
Science, pages 149–165. Springer, 1997.

[12] J. Daemen and V. Rijmen. AES Proposal: Rijndael. AES Algorithm Submis-
sion, September 3, 1999. Available: http://csrc.nist.gov/archive/aes/rijndael/

Rijndael-ammended.pdf (2008/10/29).

[13] J. Daemen and V. Rijmen. The Design of Rijndael. Springer, 2002.

27

[14] I. Damg̊ard. A Design Principle for Hash Functions. In G. Brassard, editor, Advances in
Cryptology – CRYPTO ’89, Proceedings, volume 435 of Lecture Notes in Computer Science,
pages 416–427. Springer, 1990.

[15] Q. Dang. Draft NIST Special Publication 800-106: Randomized Hashing for Digital
Signatures, 2008. Available: http://csrc.nist.gov/publications/drafts/800-106/

2nd-Draft_SP800-106_July2008.pdf (2008/10/17).

[16] C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics: General Results and
Applications. In X. Lai and K. Chen, editors, Advances in Cryptology – ASIACRYPT 2006,
Proceedings, volume 4284 of Lecture Notes in Computer Science, pages 1–20. Springer, 2006.

[17] R. D. Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton University,
January 1999.

[18] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong Authentication for RFID Sys-
tems Using the AES Algorithm. In M. Joye and J.-J. Quisquater, editors, Cryptographic
Hardware and Embedded Systems – CHES 2004, Proceedings, volume 3156 of Lecture Notes
in Computer Science, pages 357–370. Springer, 2004.

[19] M. Feldhofer and C. Rechberger. A Case Against Currently Used Hash Functions in RFID
Protocols. In R. Meersman, Z. Tari, and P. Herrero, editors, OTM Workshops (1), volume
4277 of Lecture Notes in Computer Science, pages 372–381. Springer, 2006.

[20] P.-A. Fouque, J. Stern, and S. Zimmer. Cryptanalysis of Tweaked Versions of SMASH
and Reparation. In Selected Areas in Cryptography 2008, Proceedings, Lecture Notes in
Computer Science. Springer. To appear.

[21] P. Gauravaram and K. Okeya. An Update on the Side Channel Cryptanalysis of MACs
Based on Cryptographic Hash Functions. In Progress in Cryptology – INDOCRYPT 2007,
Proceedings, volume 4859 of Lecture Notes in Computer Science, pages 393–403. Springer,
2007.

[22] P. Gauravaram and K. Okeya. Side Channel Analysis of Some Hash Function Based MACs:
A Response to SHA-3 Requirements. In L. Chen, M. D. Ryan, and G. Wang, editors,
International Conference on Information and Communications Security – ICICS 2008,
Proceedings, volume 5308 of Lecture Notes in Computer Science, pages 111–127. Springer,
2008.

[23] The Grøstl web page. http://www.groestl.info.

[24] S. Halevi and H. Krawczyk. Strengthening Digital Signatures Via Randomized Hashing.
In C. Dwork, editor, Advances in Cryptology – CRYPTO 2006, Proceedings, volume 4117
of Lecture Notes in Computer Science, pages 41–59. Springer, 2006.

[25] Intel Corporation. Advanced Encryption Standard (AES) Instructions Set. Available:
http://softwarecommunity.intel.com/articles/eng/3788.htm (2008/10/30).

[26] Intel Corporation. Intel AVX: New Frontiers in Performance Improvements and Energy
Efficiency. Available: http://softwarecommunity.intel.com/articles/eng/3775.htm

(2008/10/30).

[27] A. Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Construc-
tions. In M. K. Franklin, editor, Advances in Cryptology – CRYPTO 2004, Proceedings,
volume 3152 of Lecture Notes in Computer Science, pages 306–316. Springer, 2004.

28

[28] J. Kelsey and S. Lucks. Collisions and Near-Collisions for Reduced-Round Tiger. In
M. J. B. Robshaw, editor, Fast Software Encryption 2006, Proceedings, volume 4047 of
Lecture Notes in Computer Science, pages 111–125. Springer, 2006.

[29] J. Kelsey and B. Schneier. Second Preimages on n-Bit Hash Functions for Much Less than
2n Work. In R. Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, Proceedings,
volume 3494 of Lecture Notes in Computer Science, pages 474–490. Springer, 2005.

[30] L. R. Knudsen, C. Rechberger, and S. S. Thomsen. The Grindahl Hash Functions. In
A. Biryukov, editor, Fast Software Encryption 2007, Proceedings, volume 4593 of Lecture
Notes in Computer Science, pages 39–57. Springer, 2007.

[31] L. R. Knudsen and V. Rijmen. Known-Key Distinguishers for Some Block Ciphers. In
K. Kurosawa, editor, Advances in Cryptology – ASIACRYPT 2007, Proceedings, volume
4833 of Lecture Notes in Computer Science, pages 315–324. Springer, 2007.

[32] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In N. Koblitz, editor, Advances in Cryptology – CRYPTO ’96, Proceedings,
number 1109 in Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[33] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in Cryptology
– CRYPTO ’99, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[34] K. Lemke, K. Schramm, and C. Paar. DPA on n-bit sized boolean and arithmetic oper-
ations and its application to IDEA, RC6, and the HMAC-construction. In Cryptographic
Hardware and Embedded Systems – CHES 2004, Proceedings, volume 3156 of Lecture Notes
in Computer Science, pages 205–219. Springer, 2004.

[35] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks – Revealing the Secrets of
Smart Cards. Springer, 2007.

[36] S. M. Matyas, C. H. Meyer, and J. Oseas. Generating strong one-way functions with
crypographic algorithm. IBM Technical Disclosure Bulletin, 27(10A):5658–5659, 1985.

[37] R. P. McEvoy, M. Tunstall, C. C. Murphy, and W. P. Marnane. Differential Power Analysis
of HMAC Based on SHA-2, and Countermeasures. In Workshop on Information Security
Applications – WISA 2007, Revised Selected Papers, volume 4867 of Lecture Notes in
Computer Science, pages 317–332. Springer, 2007.

[38] F. Mendel, B. Preneel, V. Rijmen, H. Yoshida, and D. Watanabe. Update on Tiger. In
R. Barua and T. Lange, editors, Progress in Cryptology – INDOCRYPT 2006, Proceedings,
volume 4329 of Lecture Notes in Computer Science, pages 63–79. Springer, 2006.

[39] F. Mendel and V. Rijmen. Cryptanalysis of the Tiger Hash Function. In K. Kurosawa,
editor, Advances in Cryptology – ASIACRYPT 2007, Proceedings, volume 4833 of Lecture
Notes in Computer Science, pages 536–550. Springer, 2007.

[40] R. C. Merkle. One Way Hash Functions and DES. In G. Brassard, editor, Advances in
Cryptology – CRYPTO ’89, Proceedings, volume 435 of Lecture Notes in Computer Science,
pages 428–446. Springer, 1990.

[41] S. Miyaguchi, K. Ohta, and M. Iwata. Confirmation that Some Hash Functions Are Not
Collision Free. In I. Damg̊ard, editor, Advances in Cryptology – EUROCRYPT ’90, Pro-
ceedings, volume 473 of Lecture Notes in Computer Science, pages 326–343. Springer, 1991.

29

[42] National Institute of Standards and Technology. FIPS PUB 180-2, Secure Hash Stan-
dard. Federal Information Processing Standards Publication 180-2, U.S. Department of
Commerce, August 2002.

[43] National Institute of Standards and Technology. FIPS PUB 198, The Keyed-Hash Message
Authentication Code (HMAC). Federal Information Processing Standards Publication 198,
U.S. Department of Commerce, March 2002.

[44] National Institute of Standards and Technology. Announcing Request for Candidate Algo-
rithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Reg-
ister, 27(212):62212–62220, November 2007. Available: http://csrc.nist.gov/groups/

ST/hash/documents/FR_Notice_Nov07.pdf (2008/10/17).

[45] K. Nyberg. Differentially uniform mappings for cryptography. In T. Helleseth, editor,
Advances in Cryptology – EUROCRYPT ’93, volume 765 of Lecture Notes in Computer
Science, pages 55–64. Springer, 1994.

[46] K. Okeya. Side Channel Attacks Against HMACs Based on Block-Cipher Based Hash
Functions. In Australasian Conference on Information Security and Privacy – ACISP
2006, Proceedings, volume 4058 of Lecture Notes in Computer Science, pages 432–443.
Springer, 2006.

[47] D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. Tech-
nical Report CSTR-02-003, University of Bristol, Department of Computer Science,
June 2002. Available: http://www.cs.bris.ac.uk/Publications/Papers/1000625.pdf
(2008/10/30).

[48] T. Peyrin. Cryptanalysis of Grindahl. In K. Kurosawa, editor, Advances in Cryptology –
ASIACRYPT 2007, Proceedings, volume 4833 of Lecture Notes in Computer Science, pages
551–567. Springer, 2007.

[49] N. Pramstaller, C. Rechberger, and V. Rijmen. A compact FPGA implementation of
the hash function Whirlpool. In FPGA ’06: Proceedings of the 2006 ACM/SIGDA 14th
international symposium on Field programmable gate arrays, pages 159–166, New York,
NY, USA, 2006. ACM.

[50] B. Preneel, R. Govaerts, and J. Vandewalle. Hash Functions Based on Block Ciphers: A
Synthetic Approach. In D. R. Stinson, editor, Advances in Cryptology – CRYPTO ’93,
Proceedings, volume 773 of Lecture Notes in Computer Science, pages 368–378. Springer,
1994.

[51] G. Tsudik. Message Authentication with One-Way Hash Functions. In INFOCOM ’92,
Proceedings, pages 2055–2059, 1992.

[52] Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi. Cryptanalysis of Block Ciphers
Implemented on Computers with Cache. In International Symposium on Information The-
ory and Its Applications (ISITA 2002), Proceedings, October 2002.

[53] D. Wagner. A Generalized Birthday Problem. In M. Yung, editor, Advances in Cryptology
– CRYPTO 2002, Proceedings, volume 2442 of Lecture Notes in Computer Science, pages
288–303. Springer, 2002.

30

[54] X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup, editor,
Advances in Cryptology – CRYPTO 2005, Proceedings, volume 3621 of Lecture Notes in
Computer Science, pages 17–36. Springer, 2005.

[55] Wikipedia. Close-mid front rounded vowel. http://en.wikipedia.org/wiki/Close-mid_
front_rounded_vowel (2008/08/21).

[56] K. Yasuda. “Sandwich” Is Indeed Secure: How to Authenticate a Message with Just One
Hashing. In J. Pieprzyk, H. Ghodosi, and E. Dawson, editors, Australasian Conference
on Information Security and Privacy – ACISP 2007, Proceedings, volume 4586 of Lecture
Notes in Computer Science, pages 355–369. Springer, 2007.

A The name

Gröstl is an Austrian dish, usually made of leftover potatoes and pork, cut into slices. These
are roasted on a pan together with onions and butterfat. The dish is often seasoned with salt,
pepper, marjoram, cumin, and parsley, and served with a fried egg or kraut (cabbage). Hence,
gröstl is somewhat similar to the American dish called hash.

The letter ‘ö’ was replaced by ‘ø’, which is a letter in the Danish alphabet that is pronounced
in the same way as ‘ö’. This way, the name, like the hash function itself, contains a mix of
Austrian and Danish influences.

The pronunciation of Grøstl may seem challenging. If you think so, then think of the letter
‘ø’ as the ‘i’ in “bird”. This letter is a so-called close-mid front rounded vowel, and if you need
more examples of its pronunciation, or a sound sample, check out [55].

The letter ‘ø’ may not appear on your keyboard. It can be written in a number of word
processing environments as follows:

Environment Command for ‘ø’

LATEX {\o}

HTML ø or ø
Windows Alt + 0248
Linux AltGr + o ∗

(∗ does not work in all settings.)

B S-box

The s-box used in Grøstl is defined in Table 8.

31

Table 8: The Grøstl s-box (identical to the Rijndael/AES s-box). Given input x, find x∧ f0 in
the first column (‘∧’ is logical and), and find x ∧ 0f in the first row. Where the corresponding
row and column meet, find the output S(x) of the s-box.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

32

