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Abstract. Grøstl is a SHA-3 finalist with clear proofs against a large class of differential
attacks, similar to those of MD6. Furthermore, in this note we provide an update also
regarding more advanced types of differential attacks that have been developed in recent
years. We apply the rebound attacks on the initial submission to the tweaked version of
Grøstl. We have analyzed the round-reduced hash function and compression function of
Grøstl-256 (10 rounds) and Grøstl-512 (14 rounds). For both versions, we get collisions
for 3 rounds of the hash function and collisions for 6 rounds of the compression function.
We hope that our own efforts on improving the cryptanalysis will continue to motivate
and accelerate external cryptanalysis.

1 Introduction

The SHA-3 candidate Grøstl has been tweaked in the final round of the NIST SHA-3 com-
petition. In the following, we call the initial submission Grøstl-0 [1] and the tweaked version
Grøstl [2]. In this note we apply the rebound attacks on Grøstl-0 published in [6] to Grøstl.

Since the shift values of ShiftBytes in Grøstl are different for P and Q, it is more difficult
to find good truncated differential paths for both permutations which result in a (semi-free-
start) collision. In general, most attacks are getting more difficult, since an optimal truncated
differential path in P is usually not optimal in Q.

Furthermore, by increasing the size of the round constants in Grøstl, the internal differential
attacks [3,7] (which consider differences between P and Q) get infeasible, even for a small number
of rounds. In the following, we briefly present the best known attacks for the reduced and tweaked
Grøstl compression functions and hash functions.

A summary of the currently best known results is given in Table 1.

Table 1. Summary of results for the round-reduced Grøstl hash and compression functions.

Target Hash Size Rounds Time Memory Type Reference

hash 224,256 3/10 264 - collision Sect. 2

function 512 3/14 2192 - collision Sect. 3

compression 256 6/10 2120 264 semi-free-start collision Sect. 4

function 384,512 6/14 2180 264 semi-free-start collision Sect. 5

2 Collisions for 3 Rounds of Grøstl-256

When analyzing the hash function, we need to ensure that the pattern of active bytes prior
to the last round is the same in each permutation. Furthermore, the different shift constants
of SubBytes make the SuperBox match over the full first round (see [6]) more difficult. In the
following we present two truncated differential paths which lead to a collision attack for 3 rounds
of the hash function.



2.1 Path 1

The most simple case is to consider only one active byte prior to MixBytes in the last round of
each permutation. Then we immediately get the minimum 3-round truncated differential path
given in Fig. 1, with full active states at the input of each permutation.

Next, we need to verify if the truncated differential path is valid, i.e. if we have enough
freedom such that the expected number of pairs is at least 1. This expected number of pairs can
be computed by multiplying the total number of input pairs by the probability that the truncated
differential path is followed for each input pair. Usually, we call the log2 of the expected number
of pairs the degrees of freedom we have in an attack.

For the truncated differential path of Fig. 1, the total number of input pairs depends on the
number of pairs for the message Mi and for the chaining input Hi−1 or initial value (IV ), and
we get approximately:

28·(64+64)︸ ︷︷ ︸
M1

· 1︸︷︷︸
IV

= 21024

The probability of the given truncated differential path is determined by the probabilistic
propagation in the MixBytes transformations of round r1 and r2 and in the final XOR at the
output. For example, in the MixBytes transformation of round r2 in permutation Q, the path
reduces from 8 → 1 active bytes which happens with a probability of about 2−56. In total, the
approximate probability of the truncated differential path can be computed as follows:

2−8·56 · 2−8·56︸ ︷︷ ︸
MB(r1)

· 2−8·7 · 2−8·7︸ ︷︷ ︸
MB(r2)

· 2−8·1︸ ︷︷ ︸
XOR

= 2−1016

Hence, the expected number of pairs of the truncated differential path given in Fig. 1 can be
computed as follows:

28·(64+64)︸ ︷︷ ︸
M1

· 1︸︷︷︸
IV

· 2−8·56 · 2−8·56︸ ︷︷ ︸
MB(r1)

· 2−8·7 · 2−8·7︸ ︷︷ ︸
MB(r2)

· 2−8·1︸ ︷︷ ︸
XOR

= 28
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Fig. 1. The truncated differential path to get a collision attack on 3 out of 10 rounds for the
hash function of Grøstl-256. The inbound phase (red) can be solved with average complexity 1,
the outbound phase (blue) with a total complexity of about 256 · 28 = 264. The first SuperBox
in the inbound phase is shown by red rectangles.

We use the rebound attack to find pairs for the truncated differential paths in P and Q. First,
we compute pairs for the inbound phase between rounds r1 and r2 in Q and round r1 in P . Note
that in this path, the SuperBoxes are not fully active. In this case, the memory complexity of
the attack can be reduced significantly. In fact we can even apply the techniques published in [5]
with memory complexities of at most 216. Also the techniques published in [8] and [4] could be
applied. In any case, the complexity to find a conforming input pair according to the truncated
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differential path until state Q2 in permutation Q, and until state P1 in permutation P is 1 on
average. We compute 264 such pairs and propagate them outwards. With a probability of 2−56

we get one active byte in P2 and with a probability of 2−8 also the 1-byte differences in the last
round prior to MixBytes are equal. Hence, we get a collision for 3 rounds of the hash function
with a total complexity of 264 in time and negligible memory requirements.

2.2 Path 2

Again we can use a second truncated differential path which has the same time complexity, but
higher memory complexities. We still mention this path here since it could be interesting in
future analysis of the Grøstl-256 hash function. The path is constructed in a similar way as the
second path of the compression function attacks on Grøstl-256 and given in Fig. 2. Note that
the pattern of active bytes in Q2 can be determined from the pattern in P2 by the relation

Q2 ← ShiftBytes−1
Q ◦ ShiftBytesP ◦ P2

which results in the following left-shift values (mod 8):

{0, 1, 2, 3, 4, 5, 6, 7} − {1, 3, 5, 7, 0, 2, 4, 6} = {7, 6, 5, 4, 4, 3, 2, 1}

Again, we verify if the truncated differential path is valid and compute the expected number
of solutions. The path is probabilistic in the MixBytes transformations of round r1 and r2 in Q,
in the MixBytes transformations of round r1 in P , and in the XOR at the output. Hence, the
expected number of pairs is given as follows:

28·(64+64)︸ ︷︷ ︸
M1

· 1︸︷︷︸
IV

· 2−8·8 · 2−8·56︸ ︷︷ ︸
MB(r1)

· 2−8·49︸ ︷︷ ︸
MB(r2)

· 2−8·8︸ ︷︷ ︸
XOR

= 256
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Fig. 2. Another truncated differential path to get a collision attack on 3 out of 10 rounds for the
hash function of Grøstl-256. The inbound phase (red) can be solved with average complexity
1, the outbound phase (blue) with a total complexity of about 1 · 264 = 264. The first SuperBox
in the inbound phase is shown by red rectangles.

In the inbound phase, we can do a standard SuperBox match with memory complexity 264,
or use the non-full active SuperBox techniques of [8] with a memory complexity of 256 since only
7 bytes are active. We get one pair on average for the inbound phase, such that the truncated
differential path until states Q2 and P1 is fulfilled. Furthermore, each of these pairs also follows
the truncated differential path until the end of each permutation with a probability of almost 1.
We get a collision if the 8-byte differences prior to the last MixBytes transformation are equal
which happens with a probability of 2−64. Hence, the total complexity to get a collision for 3
rounds of the Grøstl-256 hash function using this path is 264 with memory requirements of 256.
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3 Collisions for 3 Rounds of Grøstl-512

When analyzing the hash function of Grøstl-512, we first need to construct a colliding and
valid truncated differential path. Similar as for the compression function, we need an (almost)
full active state at least once in the path due to the wide-trail design strategy.

The used truncated differential path is shown in Fig. 3. Due to the slower diffusion in Grøstl-
512, we cannot use a single active byte in the last round. However, we can use a path with 3
active bytes in both P2 and Q2. This path is similar as Path 1 in the hash function attack on
Grøstl-256. Note that we need at least 3 active bytes in the last round such that we get full
active states in both Q0 and P0. Otherwise, the pattern of active bytes would not match at the
input of the hash function. Note that the pattern of active bytes in Q2 can be determined from
the pattern in P2 by the relation

Q2 ← ShiftBytes−1
Q ◦ ShiftBytesP ◦ P2

which results in the following left-shift values (mod 16):

{0, 1, 2, 3, 4, 5, 6, 11} − {1, 3, 5, 11, 0, 2, 4, 6} = {15, 14, 13, 8, 4, 3, 2, 5}.

Finally, we also verify if this truncated differential path is valid and compute the expected
number of solutions. The path is probabilistic in the MixBytes transformations of round r1 and
r2 in both P and Q, and in the XOR at the output. Hence, the expected number of pairs is given
as follows:

28·(128+128)︸ ︷︷ ︸
M1

· 1︸︷︷︸
IV

· 2−8·104 · 2−8·104︸ ︷︷ ︸
MB(r1)

· 2−8·21 · 2−8·21︸ ︷︷ ︸
MB(r2)

· 2−8·3︸ ︷︷ ︸
XOR

= 224
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Fig. 3. The truncated differential path to get a collision attack on 3 out of 14 rounds for the hash
function of Grøstl-512. The inbound phase (red) can be solved with average complexity 1, the
outbound phase (blue) with a total complexity of about 23·56 · 23·8 = 2192. The first SuperBox
in the inbound phase is shown by red rectangles.

Again we use the rebound attack to find pairs according to this truncated differential path.
First, we compute pairs for the inbound phase between rounds r1 and r2 in Q and round r1 in P .
The complexity to find a solution for the truncated differential path until state Q2 in permutation
Q, and until state P1 in permutation P is 1 on average with memory requirements of 264 for
a standard SuperBox match. Using non-full active SuperBox matches or by solving linearly for
pairs, we can significantly reduce the memory requirements to at most 216. We compute 2192

such pairs in the inbound phase and propagate them outwards. With a probability of 2−168 we
get 3 active bytes after the MixBytes transformation in round r2 of permutation P . The 3-byte
differences in the last round prior to MixBytes are equal with a probability of 2−24. Hence, we
get a collision for 3 rounds of the hash function with a total complexity of 2192 in time with
negligible memory requirements.
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4 Semi-Free-Start Collisions for 6 Rounds of Grøstl-256

To get a semi-free-start collision for the compression function of Grøstl we first need to construct
a colliding truncated differential path for the two permutations. Due to the different shift value
in P and Q this gets more difficult than for Grøstl-0. In the following, we show two truncated
differential paths which lead to collision attacks on the compression function with the same
attack complexity.

4.1 Path 1

The most straight-forward approach is to consider only one active byte prior to the first and after
the last SubBytes layer. This way, the ShiftBytes transformations do not change the pattern of
active bytes in the first and last round and we can get a collision at the output of the compression
function. The number of active bytes for each round in both P and Q is then given as follows:

1
r1−→ 8

r2−→ 64
r3−→ 64

r4−→ 8
r5−→ 1

r6−→ 8

The truncated differential path is shown in Fig. 4. Note that the path and also the pattern of
active bytes is still similar in P and Q.

Next, we verify if the truncated differential path is valid, i.e. if the expected number of
solutions is at least 1. This number can be computed by multiplying the total number of input
pairs by the probability that the truncated differential path is followed for each input pair. Note
that the path is only probabilistic in the MixBytes transformations of round r4 and r5, and in
the XOR at the output. Hence, the expected number of pairs is given as follows:

28·(64+1)︸ ︷︷ ︸
Mi

· 28·64︸︷︷︸
Hi−1

· 2−8·56 · 2−8·56︸ ︷︷ ︸
MB(r4)

· 2−8·7 · 2−8·7︸ ︷︷ ︸
MB(r5)

· 2−8·1︸ ︷︷ ︸
XOR

= 216
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Fig. 4. The truncated differential path to get a semi-free-start collision attack for 6 out of
10 rounds of the compression function of Grøstl-256. The inbound phase (red) can be solved
with average complexity 1, and the outbound phase (blue) with a total complexity of about
24 · 256 · 256 · 24 = 2120 compression function evaluations. The first SuperBox in the inbound
phase is shown by red rectangles.

In the compression function attack, we first compute pairs for each permutation indepen-
dently and then, match the input and output differences using a birthday attack. By computing
the inbound phase with SuperBox matches, we can find pairs for the three middle rounds r2, r3
and r4 with an average complexity of 1 and memory requirements of 264. For each permutation,
we independently propagate the resulting pairs outwards and get one active byte at the input
(P0, Q0) and one active byte after round r5 (P5, Q5) with a complexity of 22·56 = 2112. To get a
semi-free-start collision, the 1-byte differences at the input, and the 1-byte differences prior to
the last MixBytes transformation need to be equal. This 16-bit condition can be fulfilled with
a complexity of 28 using the birthday effect. In total, the complexity to get a semi-free-start
collision for 6 rounds of Grøstl-256 is 2112 · 28 = 2120 in time with memory requirements of 264.
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4.2 Path 2

Note that also another path with more active bytes can be used to get a semi-free-start collisions
for 6 rounds and with the same complexity. This time, we use two truncated differential paths
in P and Q where the full active state does not occur in the same round. Hence, the number of
active bytes in P and Q are different and given as follows:

Q : 8
r1−→ 1

r2−→ 8
r3−→ 64

r4−→ 56
r5−→ 8

r6−→ 64

P : 8
r1−→ 56

r2−→ 64
r3−→ 8

r4−→ 1
r5−→ 8

r6−→ 64

The respective truncated differential path is shown in Fig. 5. Remember that we need the
same pattern of active bytes at the input and prior to the last MixBytes transformation to get
a semi-free-start collision. For the given truncated differential path, we have 8 active bytes in
these states. Due to the different shift values in P and Q, we can get a single active byte only in
one of P or Q. For the other permutation, we immediately get an almost full active state. In the
given path, we get an (almost) full active state in permutation P since we require a single active
byte in Q after the first round in states P1 and Q1. We get the opposite behavior in backward
direction in states P4 (single active byte) and Q4 (almost full active state). Nevertheless, this
truncated differential path can be used to efficiently find collisions for the compression function
of Grøstl-256.

Again, we verify if the truncated differential path is valid and compute the expected number
of solutions. This time, the path is probabilistic in the MixBytes transformations of round r1, r4
and r5 of Q, in the MixBytes transformations of round r3 and r4 of P , and in the XOR at the
output. Hence, the expected number of pairs is given as follows:

28·(64+8)︸ ︷︷ ︸
Mi

· 28·64︸︷︷︸
Hi−1

· 2−8·7︸ ︷︷ ︸
MB(r1)

· 2−8·56︸ ︷︷ ︸
MB(r3)

· 2−8·8 · 2−8·7︸ ︷︷ ︸
MB(r4)

· 2−8·49︸ ︷︷ ︸
MB(r5)

· 2−8·8︸ ︷︷ ︸
XOR

= 28
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Fig. 5. Another truncated differential path to get a semi-free-start collision attack for 6 out of
10 rounds of the compression function of Grøstl-256. The inbound phase (red) can be solved
with average complexity 1, and the outbound phase (blue) with a total complexity of about
232 · 256 · 232 = 2120 compression function evaluations. The first SuperBox in the inbound phase
is shown by red rectangles.

When applying the rebound attack to this path, we can solve the inbound phase for rounds
r1, r2 and r3 in permutation P , and for rounds r3, r4 and r5 in permutation Q independently
and with average complexity 1. The memory requirements are 264 again. In each permutation,
we have one propagation through MixBytes from 8 to 1 active byte which has a complexity of
256 in each case. This time, we get a 128-bit condition such that the differences of the 8 active
bytes at the input and output (prior to MixBytes) cancel each other. Using a birthday attack we
can match the differences with a complexity of 264 in time and memory. In total, the complexity
for this semi-free-start collision attack on 6 rounds is again 256 · 264 = 2120 in time with memory
requirements of 264.
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5 Semi-Free-Start Collisions for 6 Rounds of Grøstl-512

To get a semi-free-start collision for the compression function of Grøstl-512, we use a similar
path as in [6]. Due to the different shift values in P and Q we need to reduce this path by
one round to get a colliding truncated difference pattern at the input and output. This gets
much easier if the number of active bytes at the input and output is very low. The truncated
differential path is shown in Fig. 6.

Next, we verify if the truncated differential path is valid and compute the expected number
of solutions. The path is probabilistic in the MixBytes transformations of round r3, r4 and r5,
and in the XOR at the output. The expected number of pairs is given as follows:

28·(128+1)︸ ︷︷ ︸
Mi

· 28·(128)︸ ︷︷ ︸
Hi−1

· 2−8·16 · 2−8·16︸ ︷︷ ︸
MB(r3)

· 2−8·96 · 2−8·96︸ ︷︷ ︸
MB(r4)

· 2−8·14 · 2−8·14︸ ︷︷ ︸
MB(r5)

· 2−8·2︸ ︷︷ ︸
XOR

= 224
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Fig. 6. The truncated differential path to get a semi-free-start collision attack for 6 out of
14 rounds of the compression function of Grøstl-512. The inbound phase (red) can be solved
with average complexity 1, and the outbound phase (blue) with a total complexity of about
24 · 256 · 2112 · 28 = 2180 compression function evaluations. The first SuperBox in the inbound
phase is shown by red rectangles.

Again, we use the rebound attack to find pairs for each truncated differential path in P
and Q. We compute pairs for each permutation independently and match the input and output
differences using a birthday attack. By computing the inbound phase with SuperBox matches,
we can find pairs for the three middle rounds r2, r3 and r4 with an average complexity of 1 and
memory requirements of 264. For each permutation, we independently propagate the resulting
pairs outwards and get one active byte at the input (P0, Q0) and one active byte after round r5
(P5, Q5) with a complexity of 23·56 = 2168. To get a semi-free-start collision, the 1-byte differences
at the input, and the 2-byte differences prior to the last MixBytes transformation need to be equal.
This 24-bit condition can be fulfilled with a complexity of 212 using the birthday effect. In total,
the complexity to get a semi-free-start collision for 6 rounds of Grøstl-512 is 2168 · 212 = 2180

in time with memory requirements of 264.

6 Conclusion

In this note we have updated the cryptanalysis results on Grøstl to the tweaked version. The
given results and truncated differential paths provide a starting point for future independent
analysis of Grøstl. Furthermore, we encourage the analysis of Grøstl-0, the initial submission
to the SHA-3 competition.
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Martin Schläffer, and Søren S. Thomsen. Grøstl – a SHA-3 candidate. Submission to NIST, 2008.
Available online: http://groestl.info.

7

http://groestl.info


2. Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger,
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